Review and Team Projects

COMP 741/841 Week 9 Spring 2024

Agenda

- Reinforcement learning (RL)
- Team projects

Reinforcement Learning

- Agent, states, start/goal states, actions per state, rewards
- Agent performs action a_t in state s_t
 - To transition in the next state s_(t+1)
 - For which it gets a reward (numerical score)
- Agent purpose: maximize the reward

RL: Q Function and Q Table

- Learns the value of an action in a given state
- Uses Q-function (quality of state & action combination):
- Calculates the Q values of the *maximum expected future rewards* in each state, for each action
- Records and iteratively updates the values in a Q table
 - Columns are the actions
 - Rows are the possible states

RL: Q-Learning Algorithm

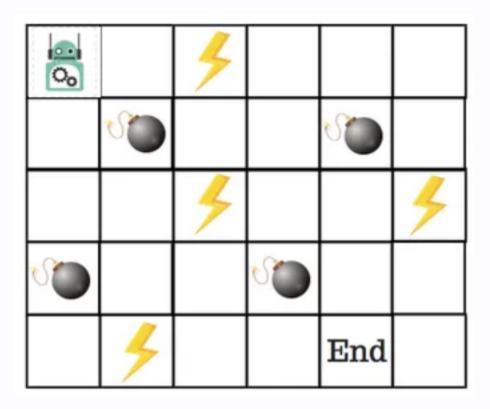
- Initially, Q values in the Q tables are set to an arbitrary fixed value
- At each time **t**, the agent
 - Agent selects action a_t
 - Agent observes the reward R_(t+1)
 - Agent transitions to state S_(t+1) (based on state s_t)
 - New Q(s_t, a_t) value updates current Q value
- Introduced by Chris Watkins in 1989

New Q Value Calculation

New Q value uses Bellman equation, which depends on:

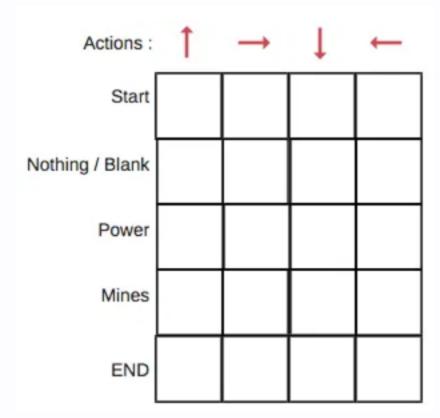
- ullet Learning rate lpha
- Discount factor γ
- Maximum expected future reward given the new state and ALL possible actions in the new state

Deep Q-Learning and More


- Deep Q-Learning (DQN)
 - Google DeepMind patents Q-learning applied to deep learning (DQN) in 2014
 - Can play Atari games at expert human levels
 - Uses a deep convolutional neural network
- Other types of Q-learning
 - o Double DQN, Delayed Q-learning, multi-agent (mini-max) Qlearning

Classic Q-Learning Algorithm Example

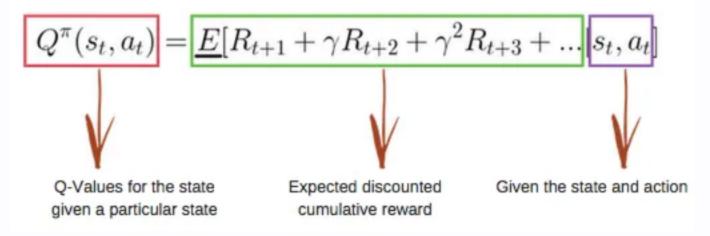
Source: ADL. 2018. An Introduction to Q-Learning: Reinforcement Learning. freeCodeCamp.Org. September 3, 2018.


https://www.freecodecamp.org/news/an-introduction-to-q-learning-reinforcement-learning-14ac0b4493cc/

Problem: Train the robot to reach the end goal with the shortest path without stepping on a mine

Q-Table Example

- 4 actions: up, right, down, left
- 5 possible states: start, end, power, mine, nothing/blank
- Q-table score: maximum expected future reward the robot gets IF it takes the action at the state



Reward (scoring) points

- Lose 1 point at each step to reward the shortest path and reaching the goal as fast as possible
- Lose 100 points if the robot steps on a mine
- Gain 1 point if the robot steps on power
- Gain 100 points if the robot reaches the End goal.

Q-Function

• Belman equation

• Q-value calculation

New Q(s,a) =
$$Q(s,a) + \alpha [R(s,a) + \gamma maxQ'(s',a') - Q(s,a)]$$

New Q-value Calculation

New Q(s,a) =
$$Q(s,a) + \alpha [R(s,a) + \gamma maxQ'(s',a') - Q(s,a)]$$

- New Q Value for that state and the action
- Learning Rate
- Reward for taking that action at that state
- Current Q Values
- Maximum expected future reward given the new state (s') and all possible actions at that new state.
- Discount Rate